菱形数学教案

时间:2024-06-21 16:41:27
菱形数学教案

菱形数学教案

作为一名为他人授业解惑的教育工作者,时常会需要准备好教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么应当如何写教案呢?下面是小编精心整理的菱形数学教案,希望能够帮助到大家。

菱形数学教案1

一、教学目标

1.掌握菱形的判定.

2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

3.通过教具的演示培养学生的学习兴趣.

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

二、教法设计

观察分析讨论相结合的方法

三、重点·难点·疑点及解决办法

1.教学重点:菱形的判定方法.

2.教学难点:菱形判定方法的综合应用.

四、课时安排

1课时

五、教具学具准备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

【复习提问】

1.叙述菱形的定义与性质.

2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为________.

【引入新课】

师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

生答:定义法.

此外还有别的两种判定方法,下面就来学习这两种方法.

【讲解新课】

菱形判定定理1:四边都相等的四边形是菱形.

菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1

分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.

分析判定2:

师问:本定理有几个条件?

生答:两个.

师问:哪两个?

生答:(1)是平行四边形(2)两条对角线互相垂直.

师问:再需要什么条件可证该平行四边形是菱形?

生答:再证两邻边相等.

(由学生口述证明)

证明时让学生注意线段垂直平分线在这里的应用,

师问:对角线互相垂直的四边形是菱形吗?为什么?

可画出图,显然对角线 ,但都不是菱形.

菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

菱形数学教案2

一、教学目的:

1、掌握菱形概念,知道菱形与平行四边形的关系;

2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积;

3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;

二、重点、难点

1、教学重点:菱形的性质1、2;

2、教学难点:菱形的`性质及菱形知识的综合应用;

三、例题的意图分析

本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题、此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识;

四、课堂引入

1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念;

《18、2、2菱形》课时练习含答案;

5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是( )

A、矩形 B、菱形 C、正方形 D、梯形

答案:B

知识点:等边三角形的性质;菱形的判定

解析:

解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形、根据题意得,拼成的四边形四边相等,则是菱形、故选B、

分析:此题主要考查了等边三角形的性质,菱形的定义、

6、用两个边长为a的等边三角形纸片拼成的四边形是( )

A、等腰梯形 B、正方形 C、矩形 D、菱形

答案:D

知识点:等边三角形的性质;菱形的判定

解析:

解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形、由题意可得:得到的四边形的四条边相等,即是菱形、故选D、

分析:本题利用了菱形的概念:四边相等的四边形是菱形、

《菱形的性质与判定》练习题

一 选择题:

1、下列四边形中不一定为菱形的是( )

A、对角线相等的平行四边形 B、每条对角线平分一组对角的四边形

C、对角线互相垂直的平行四边形 D、用两个全等的 等边三角形拼成的四边形

2、下列说法中正确的是( )

A、四边相等的四边形是菱形

B、一组对边相等,另一组对边平行的四边形是菱形

C、对角线互相垂直的四边形是菱形

D、对角线互相平分的四边形是菱形

3、若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )

A、菱形 B、对角线互相垂直的四边形 C、矩形 D、对角线相等的四边形

《菱形数学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式